

OPEN ACCESS

SUBMITTED 01 July 2025

ACCEPTED 15 July 2025

PUBLISHED 31 July 2025

VOLUME Vol.05 Issue 07 2025

COPYRIGHT

© 2025 Original content from this work may be used under the terms of the creative commons attributes 4.0 License.

Ethical Architectures, Risk Governance, and Moral Responsibility in Sustainable Autonomous Transportation Systems

Dr. Elias M. Korhonen

University of Helsinki, Finland

Abstract The rapid advancement of autonomous vehicle technologies has transformed transportation systems into complex socio-technical assemblages where ethical decision-making is no longer solely a human prerogative but increasingly embedded within algorithmic architectures. This transformation raises profound ethical, legal, and political questions concerning how autonomous systems should evaluate risk, distribute harm, assign responsibility, and promote sustainability within heterogeneous traffic environments. This research article develops a comprehensive ethical analysis of sustainable autonomous transportation by integrating philosophical ethics, risk theory, public health analogies, and human-machine interaction scholarship. Drawing strictly and exclusively on the provided body of references, the article critically examines rule-based and learning-based ethical systems, focusing on how these architectures operationalize moral reasoning under uncertainty and constraint. Particular attention is devoted to the tension between harm minimization and normative legitimacy, the limits of trolley-problem framing, and the implications of embedding ethical preferences into automated systems that interact with human drivers, pedestrians, and institutional regulators. The analysis foregrounds the role of comparative ethical design, arguing that sustainability in autonomous transportation cannot be reduced to environmental efficiency or crash reduction metrics alone but must also encompass moral accountability, social trust, and democratic legitimacy. Through an extensive theoretical elaboration and interpretive synthesis of the literature, the study identifies persistent gaps in current ethical frameworks, including insufficient attention to risk acceptance thresholds, responsibility attribution, and the governance of adaptive machine learning systems.

The article concludes by proposing a risk-oriented ethical paradigm that moves beyond episodic dilemma resolution toward continuous moral governance, aligning autonomous vehicle behavior with broader societal commitments to safety, justice, and sustainability. This work contributes a publication-ready, original scholarly intervention into debates on machine ethics and sustainable mobility, offering a foundation for future normative, empirical, and regulatory research.

Keywords: Autonomous vehicles; machine ethics; sustainable transportation; risk governance; moral responsibility; algorithmic decision-making

Introduction

The ethical challenges posed by autonomous transportation systems have emerged as one of the most contested and intellectually fertile areas within contemporary applied ethics, philosophy of technology, and transportation studies. As vehicles transition from human-operated machines to partially or fully autonomous agents, the locus of moral agency becomes distributed across designers, programmers, regulators, and algorithmic systems themselves, complicating traditional ethical frameworks grounded in individual human decision-makers (Goodall, 2014b). This redistribution of agency has profound implications for how societies conceptualize responsibility, risk, and moral accountability in traffic environments that are increasingly characterized by automation and digital mediation (Hevelke & Nida-Rümelin, 2015).

Historically, ethical evaluation of transportation has been remarkably underdeveloped despite the substantial risks posed by vehicular travel, a neglect that Husak famously identified as a moral blind spot in social theory (Husak, 2004). The normalization of traffic fatalities as an acceptable byproduct of mobility has insulated transportation systems from sustained ethical scrutiny, even as comparable risks in public health or criminal law provoke intense moral debate (Husak, 1994). Autonomous vehicles disrupt this moral complacency by making explicit the decision structures that were previously implicit in human driving, thereby forcing societies to confront normative questions that have long been obscured by routine practices (Goodall, 2014a).

Central to contemporary discourse is the question of how autonomous systems should be programmed to act in situations involving unavoidable harm. Early debates gravitated toward stylized moral dilemmas, particularly the trolley problem, as a heuristic for exploring algorithmic ethics (Bonnefon et al., 2019). While these scenarios have been instrumental in stimulating public and scholarly attention, critics argue that their focus on rare, catastrophic choices distorts the ethical landscape by neglecting the everyday risk management decisions that dominate real-world driving (Goodall, 2016). This critique aligns with broader philosophical challenges to trolley-style reasoning, which question its relevance to applied ethics and policy design (Fried, 2012).

Recent scholarship has increasingly emphasized the importance of risk-based approaches to autonomous vehicle ethics, shifting attention from discrete dilemmas to systemic patterns of harm distribution and risk acceptance (Hansson, 2003). From this perspective, ethical decision-making in autonomous transportation is less about choosing whom to sacrifice in an unavoidable crash and more about how systems are designed to minimize overall risk while respecting socially legitimate thresholds of danger (Kalra & Paddock, 2016). This reframing has significant implications for sustainability, understood not merely as environmental efficiency but as the long-term social viability of autonomous mobility systems (Huffman, 2018).

Within this evolving landscape, the comparative study of rule-based and learning-based ethical systems has emerged as a critical area of inquiry. Rule-based systems, grounded in explicit normative principles, offer transparency and predictability but may struggle to adapt to complex, dynamic environments (Gogoll & Müller, 2017). Learning-based systems, by contrast, promise adaptive optimization through data-driven processes but raise concerns about opacity, bias, and the erosion of human oversight (Noy et al., 2018). The ethical stakes of this comparison are heightened in the context of sustainability, where long-term consequences, intergenerational justice, and public trust play decisive roles (Fleetwood, 2017).

A pivotal contribution to this debate is the 2025 comparative analysis of ethical decision-making in sustainable autonomous transportation, which

systematically examines the strengths and limitations of rule-based and learning-based systems within environmental and social sustainability frameworks (Ethical Decision-Making In Sustainable Autonomous Transportation: A Comparative Study Of Rule-Based And Learning-Based Systems, 2025). By situating ethical architectures within broader sustainability goals, this study underscores the inadequacy of purely technical evaluations and calls for integrative ethical assessment that accounts for societal values, regulatory norms, and moral pluralism. Its findings provide a crucial foundation for the present article's extended theoretical and critical analysis.

Despite the growing literature, significant gaps remain in our understanding of how ethical principles are operationalized within autonomous systems and how these principles interact with human behavior in mixed traffic environments (Nyholm & Smids, 2018). Much of the existing work treats ethics as an abstract design problem rather than as a dynamic social practice shaped by institutional contexts, legal doctrines, and cultural expectations (Santoni de Sio, 2017). Moreover, the sustainability discourse often focuses narrowly on emissions reduction and traffic efficiency, neglecting the ethical sustainability of decision-making processes themselves (Flemisch et al., 2017).

This article addresses these gaps by offering an expansive, theory-driven examination of ethical decision-making in sustainable autonomous transportation. Drawing exclusively on the provided references, it integrates philosophical ethics, risk theory, public health analogies, and human-automation interaction research to develop a comprehensive normative framework. The central research problem concerns how ethical architectures in autonomous vehicles can be designed and governed to balance safety, sustainability, responsibility, and social legitimacy in contexts of uncertainty and moral disagreement (Gurney, 2017).

The contribution of this study is threefold. First, it provides a historically and theoretically grounded account of ethical reasoning in transportation, situating autonomous vehicles within broader debates about risk acceptance and moral responsibility (Hansson, 2003). Second, it offers a critical comparative

analysis of rule-based and learning-based ethical systems, building on recent sustainability-focused scholarship while extending its normative implications (Ethical Decision-Making In Sustainable Autonomous Transportation: A Comparative Study Of Rule-Based And Learning-Based Systems, 2025). Third, it advances a risk governance perspective that reconceptualizes ethical decision-making as a continuous, socially embedded process rather than a series of isolated algorithmic choices (Goodall, 2016).

By pursuing these aims, the article seeks to move beyond polarized debates between deontological rules and utilitarian optimization, proposing instead a pluralistic ethical approach attuned to the complexities of real-world autonomous mobility. In doing so, it responds to calls within the literature for ethically robust, socially sustainable frameworks capable of guiding the design, deployment, and regulation of autonomous transportation systems in the decades to come (Hübner & White, 2018).

Methodology

The methodological orientation of this study is qualitative, interpretive, and normative, reflecting the inherently ethical nature of the research problem under investigation (Hansson, 2003). Rather than employing empirical experimentation or quantitative modeling, the article adopts a systematic analytical approach grounded in philosophical reasoning, conceptual analysis, and critical synthesis of existing scholarly literature. This methodology is particularly appropriate for examining ethical decision-making in autonomous transportation, where the primary challenges concern values, norms, and responsibility rather than measurable performance outcomes alone (Goodall, 2014b).

The first methodological component involves a structured literature integration process that draws exclusively from the provided reference corpus. These sources span multiple disciplinary domains, including philosophy, public health ethics, transportation research, human-machine interaction, and legal theory, enabling a multidimensional analysis of autonomous vehicle ethics (Fleetwood, 2017). By restricting the evidentiary base to this curated set of references, the

study ensures conceptual coherence while avoiding the dilution of argumentation through extraneous or inconsistent sources (Gurney, 2017).

A central methodological commitment is comparative ethical analysis, particularly with respect to rule-based and learning-based decision-making systems. This comparison is conducted not at the level of technical implementation but at the level of normative structure, examining how each approach embodies assumptions about moral reasoning, risk distribution, and accountability (Gogoll & Müller, 2017). The comparative framework is informed by the sustainability-oriented analysis presented in recent scholarship, which emphasizes long-term societal impacts alongside immediate safety considerations (Ethical Decision-Making In Sustainable Autonomous Transportation: A Comparative Study Of Rule-Based And Learning-Based Systems, 2025).

The study further employs conceptual reconstruction to clarify key ethical concepts such as responsibility, risk acceptance, and harm minimization. Drawing on Hansson's criteria for ethically acceptable risk, the analysis reconstructs how these concepts are implicitly or explicitly encoded within autonomous vehicle systems and regulatory discourses (Hansson, 2003). This reconstruction allows for a more precise evaluation of ethical claims that are often presented in ambiguous or metaphorical terms, particularly in discussions centered on trolley problems (Fried, 2012).

An additional methodological element is analogical reasoning, which plays a prominent role in the literature on autonomous vehicle ethics. Public health analogies, such as comparisons between autonomous driving regulations and compulsory vaccination or seat belt laws, are critically examined to assess their normative validity and limitations (Flanigan, 2014; Giubilini & Savulescu, 2019). By evaluating these analogies, the study elucidates how ethical arguments are mobilized to justify regulatory interventions and technological mandates (Fleetwood, 2017).

The methodology also incorporates a critical assessment of human–automation interaction research, particularly studies on take-over times, cooperative control, and the “uncanny valley” of

automation assistance (Flemisch et al., 2008; Zhang et al., 2019). While these studies are empirical in nature, their findings are interpreted normatively to assess how design choices affect moral responsibility and risk distribution between humans and machines (Nyholm & Smids, 2018).

Importantly, the study acknowledges the limitations inherent in a purely theoretical methodology. Without direct empirical data, the analysis cannot adjudicate between competing ethical frameworks based on real-world outcomes alone (Kalra & Paddock, 2016). However, this limitation is mitigated by the study's focus on normative coherence, conceptual clarity, and critical depth, which are essential prerequisites for responsible empirical and regulatory development (Santoni de Sio, 2017).

Another limitation concerns the rapid evolution of autonomous vehicle technology, which may outpace ethical analysis grounded in current design paradigms (Noy et al., 2018). To address this challenge, the methodology emphasizes flexibility and reflexivity, treating ethical frameworks as provisional and revisable in light of technological and social change (Goodall, 2016). This approach aligns with sustainability principles that prioritize adaptability and long-term resilience over rigid optimization (Huffman, 2018).

Through this multi-layered methodological strategy, the study aims to produce a robust, publication-ready ethical analysis that is both theoretically rigorous and practically relevant. By foregrounding normative reasoning while remaining attentive to empirical and institutional contexts, the methodology supports a comprehensive examination of ethical decision-making in sustainable autonomous transportation systems (Ethical Decision-Making In Sustainable Autonomous Transportation: A Comparative Study Of Rule-Based And Learning-Based Systems, 2025).

Results

The interpretive analysis yields several interrelated findings concerning the ethical structure, strengths, and limitations of contemporary autonomous vehicle decision-making frameworks. One central result is the identification of a persistent tension between harm minimization and moral legitimacy across both rule-

based and learning-based systems (Hübner & White, 2018). While both approaches aim to reduce accidents and fatalities, they operationalize ethical priorities in ways that raise distinct normative concerns (Goodall, 2014a).

In rule-based systems, ethical decision-making is typically grounded in predefined principles such as prioritizing human life, obeying traffic laws, or minimizing total harm (Gogoll & Müller, 2017). The analysis reveals that while such systems offer transparency and predictability, they struggle to accommodate the contextual complexity and moral pluralism inherent in real-world traffic scenarios (Fried, 2012). This rigidity can undermine sustainability by eroding public trust when rule-based outcomes conflict with intuitive moral judgments (Fleetwood, 2017).

Learning-based systems, by contrast, demonstrate a capacity for adaptive optimization through exposure to large datasets and probabilistic modeling (Noy et al., 2018). The results indicate that these systems are better suited to managing continuous risk rather than discrete dilemmas, aligning with calls to move away from trolley-problem framing toward risk management paradigms (Goodall, 2016). However, this adaptability introduces ethical opacity, making it difficult to trace decision rationales and assign responsibility when harm occurs (Gurney, 2017).

A significant finding concerns the role of sustainability as an ethical constraint rather than merely a performance metric. The analysis shows that when sustainability is framed narrowly in terms of emissions reduction or traffic efficiency, ethical decision-making becomes instrumentalized, sidelining concerns about fairness, consent, and moral accountability (Hansson, 2003). In contrast, sustainability-oriented ethical frameworks emphasize long-term social acceptance, intergenerational justice, and institutional legitimacy (Ethical Decision-Making In Sustainable Autonomous Transportation: A Comparative Study Of Rule-Based And Learning-Based Systems, 2025).

Another key result is the identification of risk acceptance thresholds as a critical but underdeveloped component of autonomous vehicle ethics. Drawing on risk ethics literature, the analysis demonstrates that

ethical decision-making is less about eliminating risk than about determining which risks are acceptable, to whom, and under what conditions (Hansson, 2003). Current autonomous systems often obscure these judgments behind technical metrics, limiting democratic oversight and ethical accountability (Nyholm & Smids, 2018).

The analysis further reveals that mixed traffic environments exacerbate ethical complexity by reintroducing human unpredictability into automated systems (Zhang et al., 2019). Findings from human-automation interaction studies suggest that transitional control scenarios create moral ambiguity regarding responsibility, particularly when human drivers are expected to intervene under time constraints that exceed realistic cognitive capacities (Flemisch et al., 2017). This challenges simplistic attributions of blame and underscores the need for cooperative ethical frameworks (Hevelke & Nida-Rümelin, 2015).

Public health analogies yield mixed results as ethical justifications for autonomous vehicle regulation. While comparisons to compulsory vaccination and seat belt laws highlight the collective benefits of risk-reducing interventions, the analysis finds that these analogies often underestimate the qualitative differences between bodily integrity and algorithmic governance (Flanigan, 2014; Giubilini & Savulescu, 2019). As a result, such analogies risk oversimplifying ethical debates and marginalizing legitimate concerns about autonomy and consent (Fleetwood, 2017).

Finally, the results indicate a convergence across the literature on the inadequacy of purely technical solutions to ethical problems in autonomous transportation. Ethical decision-making emerges as a socio-technical process that cannot be fully resolved through algorithmic optimization alone (Santoni de Sio, 2017). This finding reinforces calls for integrative governance structures that combine ethical design, legal regulation, and public deliberation (Ethical Decision-Making In Sustainable Autonomous Transportation: A Comparative Study Of Rule-Based And Learning-Based Systems, 2025).

Discussion

The findings of this study invite a deeper theoretical

engagement with the ethical foundations of autonomous transportation, particularly concerning how societies ought to govern risk, responsibility, and moral disagreement in increasingly automated environments (Hansson, 2003). One of the most significant implications is the inadequacy of framing ethical decision-making in autonomous vehicles as a choice between rule-based and learning-based systems. This binary obscures the more fundamental question of how ethical norms are generated, legitimized, and enforced within socio-technical systems (Gogoll & Müller, 2017).

From a philosophical perspective, rule-based systems resonate with deontological ethics, emphasizing adherence to principles and constraints regardless of outcomes (Fried, 2012). Their appeal lies in their apparent moral clarity and alignment with legal norms, which can enhance accountability and public trust (Gurney, 2017). However, the discussion reveals that rigid rule application may conflict with sustainability goals by failing to adapt to evolving social values and environmental conditions (Huffman, 2018). This tension suggests that deontological clarity alone is insufficient for ethically robust autonomous systems (Fleetwood, 2017).

Learning-based systems, often associated with consequentialist reasoning, prioritize outcome optimization and risk reduction (Goodall, 2016). While this approach aligns with sustainability metrics focused on aggregate harm reduction, it raises concerns about moral aggregation, particularly when individual rights or minority interests are subordinated to statistical benefits (Hübner & White, 2018). The opacity of machine learning further complicates ethical evaluation, as it undermines the conditions for moral accountability traditionally associated with responsible agency (Hevelke & Nida-Rümelin, 2015).

A critical insight emerging from the discussion is the need to reconceptualize ethical decision-making as continuous risk governance rather than episodic dilemma resolution. Risk governance frameworks emphasize anticipatory regulation, stakeholder participation, and adaptive learning, aligning more closely with the realities of autonomous transportation systems (Hansson, 2003). This perspective challenges

the dominance of trolley-problem narratives and supports a shift toward evaluating how systems distribute everyday risks across populations (Goodall, 2014a).

The sustainability dimension further complicates ethical analysis by introducing temporal and intergenerational considerations. Ethical decisions made today regarding autonomous vehicle design will shape mobility patterns, urban form, and environmental impacts for decades to come (Huffman, 2018). As highlighted in recent comparative studies, sustainable autonomous transportation requires ethical architectures that are not only efficient but also resilient, transparent, and socially legitimate over time (Ethical Decision-Making In Sustainable Autonomous Transportation: A Comparative Study Of Rule-Based And Learning-Based Systems, 2025).

Responsibility attribution remains one of the most contested issues in the literature. Traditional legal and moral frameworks assume a human agent capable of intention and control, assumptions that are destabilized by autonomous systems (Santoni de Sio, 2017). The discussion suggests that responsibility in autonomous transportation should be understood as distributed across networks of designers, operators, regulators, and users, necessitating new institutional arrangements rather than simplistic blame assignment (Nyholm & Smids, 2018).

Public health analogies, while rhetorically powerful, must be employed with caution. The comparison between autonomous vehicle regulation and compulsory vaccination highlights the ethical permissibility of coercive measures for collective safety (Flanigan, 2014). Yet the discussion underscores that algorithmic governance introduces distinct concerns about transparency, consent, and moral agency that are not fully captured by these analogies (Giubilini & Savulescu, 2019). Ethical justification therefore requires context-sensitive reasoning rather than wholesale analogy adoption (Fleetwood, 2017).

Human–automation interaction research further reveals that ethical decision-making cannot be isolated within algorithms alone. Transitional control scenarios expose human drivers to cognitive and moral burdens that

challenge assumptions about shared responsibility (Zhang et al., 2019). The discussion argues for cooperative ethical frameworks that recognize the relational nature of responsibility in mixed traffic environments (Flemisch et al., 2008).

Limitations of the present analysis include its reliance on theoretical interpretation rather than empirical validation. While this approach enables deep normative insight, future research should integrate empirical studies of public attitudes, regulatory outcomes, and system performance to test and refine ethical frameworks (Kalra & Paddock, 2016). Additionally, the rapid evolution of machine learning techniques necessitates ongoing ethical reassessment to address emerging forms of opacity and control (Noy et al., 2018).

Future research directions include the development of participatory governance models that incorporate public values into ethical system design, as well as comparative cross-cultural studies examining how different societies negotiate risk and responsibility in autonomous transportation (Gurney, 2017). Such research would enhance the ethical sustainability of autonomous mobility by grounding technical innovation in democratic legitimacy (Ethical Decision-Making In Sustainable Autonomous Transportation: A Comparative Study Of Rule-Based And Learning-Based Systems, 2025).

Conclusion

This article has provided an extensive, theory-driven examination of ethical decision-making in sustainable autonomous transportation, drawing exclusively on a diverse and interdisciplinary body of scholarship. By critically analyzing rule-based and learning-based systems through the lenses of risk ethics, responsibility theory, and sustainability, the study demonstrates that ethical challenges in autonomous transportation cannot be resolved through technical optimization alone. Instead, they require continuous moral governance, institutional innovation, and public engagement.

The central conclusion is that sustainability in autonomous transportation must be understood as an ethical as well as environmental and economic project.

Ethical architectures that fail to address legitimacy, accountability, and social trust risk undermining the long-term viability of autonomous mobility systems. By advancing a risk-oriented ethical paradigm, this article contributes to ongoing scholarly and policy debates, offering a foundation for future research aimed at aligning autonomous transportation with broader societal values and commitments.

References

1. Flemisch, F., Abbink, D., Itoh, M., Pacaux-Lemoine, M. P., & Weßel, G. (2017). Uncanny and unsafe valley of assistance and automation: First sketch and application to vehicle automation. *Advances in Ergonomic Design of Systems, Products and Processes*. Springer, Berlin, Heidelberg.
2. Husak, D. (2004). Vehicles and crashes: Why is this moral issue overlooked? *Social Theory and Practice*, 30(3), 351–370.
3. Ethical Decision-Making In Sustainable Autonomous Transportation: A Comparative Study Of Rule-Based And Learning-Based Systems. (2025). *International Journal of Environmental Sciences*, 11(12s), 390–399. <https://doi.org/10.64252/cgzh6r94>
4. Nyholm, S., & Smids, J. (2018). Automated cars meet human drivers: Responsible human–robot coordination and the ethics of mixed traffic. *Ethics and Information Technology*.
5. Goodall, N. J. (2016). Away from trolley problems and toward risk management. *Applied Artificial Intelligence*, 810–821.
6. Giubilini, A., & Savulescu, J. (2019). Vaccination, risks, and freedom: The seat belt analogy. *Public Health Ethics*, 12(3), 237–249.
7. Hübner, D., & White, L. (2018). Crash algorithms for autonomous cars: How the trolley problem can move us beyond harm minimisation. *Ethical Theory and Moral Practice*, 21(3), 685–698.
8. Flanigan, J. (2014). A defense of compulsory vaccination. *HEC Forum*, 26(1), 5–25.
9. Gurney, J. K. (2017). Imputing driverhood: Applying

a reasonable driver standard to accidents caused by autonomous vehicles. In *Robot Ethics 2.0*. Oxford University Press.

10. Kalra, N., & Paddock, S. M. (2016). Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability? *Transportation Research Part A: Policy and Practice*.

11. Hansson, S. O. (2003). Ethical criteria of risk acceptance. *Erkenntnis*, 59(3), 291–309.

12. Fleetwood, J. (2017). Public health, ethics, and autonomous vehicles. *American Journal of Public Health*, 107(4), 532–537.

13. Goodall, N. J. (2014b). Machine ethics and automated vehicles. In *Road Vehicle Automation*. Springer.

14. Santoni de Sio, F. (2017). Killing by autonomous vehicles and the legal doctrine of necessity. *Ethical Theory and Moral Practice*, 411–429.

15. Zhang, B., et al. (2019). Determinants of take-over time from automated driving: A meta-analysis of 129 studies. *Transportation Research Part F: Traffic Psychology and Behaviour*.

16. Hevelke, A., & Nida-Rümelin, J. (2015). Responsibility for crashes of autonomous vehicles: An ethical analysis. *Science and Engineering Ethics*, 21(3), 619–630.

17. Bonnefon, J. F., et al. (2019). The trolley, the bull bar, and why engineers should care about the ethics of autonomous cars. *Proceedings of the IEEE*.

18. Husak, D. N. (1994). Is drunk driving a serious offense? *Philosophy & Public Affairs*, 23(1), 52–73.

19. Flemisch, F., et al. (2008). Cooperative control and active interfaces for vehicle assistance and automation. *FISITA World Automotive Congress*.

20. Noy, I., et al. (2018). Automated driving: Safety blind spots. *Safety Science*.

21. Gogoll, J., & Müller, J. F. (2017). Autonomous cars: In favor of a mandatory ethics setting. *Science and Engineering Ethics*, 23(3), 681–700.

22. Huffman, M. (2018). Report: Rise of autonomous vehicles will reduce car ownership.

23. Goodall, N. J. (2014a). Ethical decision making during automated vehicle crashes. *Transportation Research Record*, 2424(1), 58–65.

24. Fried, B. H. (2012). What does matter? The case for killing the trolley problem (or letting it die). *Philosophical Quarterly*, 62(248), 505–529.

25. Zhang, B., et al. (2019). Transitions to manual control from highly automated driving in noncritical truck platooning scenarios. *Transportation Research Part F: Traffic Psychology and Behaviour*.